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1. Introduction

Ref. [1] dealt with a system consisting of a proportionally damped, linear, discrete
mechanical system with n degrees of freedom (d.o.f.) to which m additional viscous
dampers are attached. Making use of the approach in Refs. [2,3], the n � n characteristic
determinant of the combined system was reduced to a determinant of order m � m; where it
was assumed that m5n; which is a more frequently encountered case in practice. As a
result, an alternative formulation was presented for the characteristic equation of the mentioned
mechanical system which can be very convenient for numerical calculations at higher n

d.o.f. values.
The basis of the approach in the cited references is a formula with a rather lengthy proof,

which is on the determinant of a diagonal matrix modified by a total of m rank-one matrices.
In the meantime, the present author has given the proof of a more general but simple formula
for the determinant of the sum of a regular square matrix (not necessarily diagonal) and
several dyadic products, i.e., rank-one matrices [4]. Based on this development, in the
present study, one is able to replace the original proportionally damped mechanical system
in Ref. [1] by a non-proportionally damped, i.e., a more general system. Hence, the
n � n characteristic determinant of a non-proportionally damped linear mechanical system
with n d.o.f. modified by m additional viscous dampers, is reduced to a much smaller determinant
of order m � m: Further, an alternative form of the characteristic equation and an
explicit analytical expression for the eigenvectors of the modified system are given. Then the
eigenvalue, eigenvector and receptance matrix sensitivities with respect to a damping-related
parameter are derived.

ARTICLE IN PRESS

*Fax: +90-212-245-07-95.

E-mail address: gurgozem@itu.edu.tr (M. G .urg .oze).

0022-460X/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jsv.2003.06.015



2. Theory

As is known, the motion of a linear discrete mechanical system with n d.o.f. is governed in the
physical space by the following matrix differential equation:

M.qðtÞ þ *D’qðtÞ þ KqðtÞ ¼ 0; ð1Þ

whereM; *D and K are the ðn � nÞ mass, damping and stiffness matrices, respectively and q is the
ðn � 1Þ vector of the generalized co-ordinates. It is assumed that the damping matrix *D is non-
proportional.
Suppose that m new viscous dampers are added to the mechanical system, such that the

damping matrix of the modified system can be written as

D ¼ *Dþ
Xm

i¼1

did
T
i ; ð2Þ

where the vectors di include both damping constant and the orientation information in the
physical space [5].
The main aim of this study is to obtain the characteristic equation, the eigencharacteristics and

the receptance matrix of the modified system and then to calculate sensitivities with respect to a
damping-related parameter.

2.1. Determination of the characteristic equation

The transformation

qðtÞ ¼ UgðtÞ; ð3Þ

where U is the modal matrix of the undamped system, results in the following equation of motion
in the modal space:

.g þ D� þ
Xm

i¼1

d�i d
�T
i

 !
’g þ X2g ¼ 0: ð4Þ

Here, the relations

UTMU ¼ I; UTKU ¼ X2 ¼ diagðo2i Þ; i ¼ 1;y; n ð5Þ

are used which are due to the mass orthonormalization of the mode vectors of the undamped
system. I denotes the ðn � nÞ unit matrix and oi is the ith eigenfrequency of the undamped system.
Additionally, the definitions

D� ¼ UT *DU; d�i ¼ UTdi ð6Þ

are introduced. It is worth noting that the first part of the transformed damping matrix, i.e., D� is
not a diagonal matrix, which is due to the non-proportional character of the original damping
matrix *D:
If a solution of the equation of motion in the modal space, Eq. (4) is assumed in the form of

gðtÞ ¼ *gelt; ð7Þ
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where l and *g represent an eigenvalue and the corresponding eigenvector, respectively, the
eigenvalue problem

ðl2Iþ lD� þ X2Þ þ l
Xm

i¼1

d�i d
�T
i

" #
*g ¼ 0 ð8Þ

is obtained, which means that the eigenvalues l are obtained from the characteristic equation

det½ðl2Iþ lD� þ X2Þ þ l
Xm

i¼1

d�i d
�T
i � ¼ 0: ð9Þ

In the above equation, unlike in Ref. [1], the sum of the first three matrices is non-diagonal,
because the matrix D� is non-diagonal, as mentioned previously. Hence, the matrix determinant
of which is to be equated to zero, consists of a non-diagonal matrix modified by m dyadic
products, i.e., m rank-one matrices.
In Ref. [4], the present author established the following formula:

det Aþ
Xm

i¼1

xiy
T
i

 !
¼ detA detG; ð10Þ

for the calculation of the determinant of a general regular matrix A modified by the sum of m
dyadic products. Here the matrix G is of the form

G ¼ ½gij� ¼ ½dj
i þ yTi A

�1xj� ði; j ¼ 1;y;mÞ; ð11Þ

dj
i-being the Kronecker delta.
Now, making use of formula (10) with Eq. (11), the equation in (9) leads to the following

characteristic equation for the modified system:

detðGÞ ¼ 0; ð12Þ

where

G ¼ ½gij� ¼ ½dj
i þ d�Ti ðl2Iþ lD� þ X2Þ�1ld�j � ði; j ¼ 1;y;mÞ: ð13Þ

It is worth noting that each element of the matrix G consists of a sum of n terms, for iaj: In
comparison to Eq. (9), here, one has to find the roots of a determinant of size ðm � mÞ; where in
practice it is usually m5n: This means that the eigenvalues l can be obtained as the roots of a
determinant of a highly reduced order.

2.2. Alternative form of the characteristic equation. Eigenvectors and frequency response matrix of

the modified system

This section is devoted to the derivation of an alternative form of the characteristic equation
which enables one to obtain explicit expressions of the eigenvectors on one side, and to calculate
the sensitivities of the eigencharacteristics of the system with respect to a damping related
parameter on the other side.
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Begin with rewriting the damping matrix of the modified system in Eq. (2) in the form

D ¼ *Dþ
Xm�1

i¼1

did
T
i

 !
þ dmd

T
m; ð14Þ

where it is insignificant which term is taken out of the summation.
The transformation in Eq. (3) yields now

.g þ ðD� þD�
1 þ d�md

�T
m Þ ’g þ X2g ¼ 0; ð15Þ

where in addition to Eqs. (5) and (6)

D�
1 ¼

Xm�1

i¼1

d�i d
�T
i ; d�m ¼ UTdm ð16Þ

are introduced.
Assumption of a solution of the form (7) leads now to the following eigenvalue problem:

ðAþ ld�md
�T
m Þ *g ¼ 0 ð17Þ

with

A ¼ l2Iþ lðD� þD�
1 Þ þ X2: ð18Þ

This means that the eigenvalues l are obtained from the characteristic equation

detðAþ ld�md
�T
m Þ ¼ 0: ð19Þ

By using the well-known formula

detðAþ abbTÞ ¼ ðdetAÞ ð1þ abTA�1bÞ ð20Þ

for the determinant of the sum of a regular square matrix and a dyadic [6], one obtains the
characteristic equation of the modified system in the following form:

1þ ld�Tm A�1d�m ¼ 0; ð21Þ

where A is given in Eq. (18).
Eigenvectors of the modified system, *g are to be obtained from Eq. (17). The kth eigenvector *gk

can be shown to be

*gk ¼ A�1
k d�m; ð22Þ

where Ak denotes the right side of expression (18) for l ¼ lk:

Proof. The correctness of this statement can be shown by substituting expression (22) into
Eq. (17):

ðAk þ lkd
�
md

�T
m ÞA�1

k d�m ¼ d�m þ lkd
�
md

�T
m A�1

k d�m ¼ d�mð1þ lkd
�T
m A�1

k d�mÞ ¼ 0:

The right side is equal to zero, because the kth eigenvalue lk satisfies the characteristic equation
given by Eq. (21).
Hence, by Eq. (22), one has an explicit analytical expression for the eigenvectors of the modified

system, in the modal space. The kth eigenvector in the physical space can immediately be given via
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Eq. (3) as

%qk ¼ U *gk ¼ UA�1
k d�m: ð23Þ

The complex frequency response matrix, also referred to as receptance matrix of the mechanical
system in Eq. (1) is defined as

HðoÞ ¼ ð�o2Mþ io *Dþ KÞ�1; ð24Þ

where o denotes the forcing frequency. An expansion of the damping matrix *D in the form

*D ¼
Xn

k¼1

lk
%%dk
%%dTk ð25Þ

is possible, where lk and %%dk denote the k-th eigenvalue and eigenvector respectively [7]. This in
turn, can be rewritten as

*D ¼
Xn

k¼1

%dk %d
T
k ; ð26Þ

with %dk ¼
ffiffiffiffiffi
lk

p
%%dk: This leads to the following expression for the damping matrix of the modified

system given in Eq. (2)

D ¼
Xn

k¼1

%dk %d
T
k þ

Xm

i¼1

did
T
i ¼

Xmþn

i¼1

%di %d
T
i ; ð27Þ

where %dnþ1 ¼ d1;y; %dnþm ¼ dm are introduced.
Introduce further

%D ¼ ½%d1;y; %dnþm� ð28Þ

such that the matrix D in Eq. (27) can be written as

D ¼ %D %DT: ð29Þ

Hence, the receptance matrix of modified system can be represented in the form

%HðoÞ ¼ ð�o2Mþ io %D %DT þ KÞ�1: ð30Þ

If at this point use is made of the so-called Sherman–Morrison–Woodbury formula [8], repeated
for a special case in Ref. [9],

%HðoÞ ¼ H3ðoÞ½I� ðio %DÞ ðIþ %DTH3ðoÞðio %DÞÞ�1 %DTH3ðoÞ� ð31Þ

is obtained, where H3ðoÞ denotes

H3ðoÞ ¼ ð�o2Mþ KÞ�1; ð32Þ

i.e., the receptance matrix of the undamped system. Hence, formula (31) gives the receptance
matrix of the modified system, in terms of the receptance matrix of the undamped system and the
modified damping matrix.
Sometimes, it is desirable to express the receptance matrix %HðoÞ in terms of the receptance

matrix of the original damped system. With the definition

%%D ¼ ½d1;y; dm� ð33Þ
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and via Eq. (2), the receptance matrix %HðoÞ can be formulated as

%HðoÞ ¼ ½ð�o2Mþ io *Dþ KÞ þ io %%D %%DT��1: ð34Þ

Now, Sherman–Morrison–Woodbury formula yields

%HðoÞ ¼ HðoÞ½I� ðio %%DÞ ðIþ %%DTHðoÞðio %%DÞÞ�1 %%DTHðoÞ� ð35Þ

with

HðoÞ ¼ ½ð�o2Mþ io *Dþ KÞ�1; ð24Þ

representing the receptance matrix of the original damped system. Having obtained the
eigencharacteristics and the receptance matrix of the modified mechanical system, in the next
section, the corresponding sensitivities will be determined.

2.3. Calculation of the sensitivities of the eigencharacteristics and the receptance matrix

Let it be assumed that a denotes some damping-related parameter upon which the additional
part of the damping action in Eq. (16) depends, such that

D�
1 ¼ D�

1 ðaÞ; d�m ¼ d�mðaÞ: ð36Þ

If the characteristic equation (21) is differentiated partially with respect to a;

l0k :¼
@lk

@a
¼

�lk½d�T
0

m A�1
k d�m � lkd

�T
m A�1

k D�0

1 d
�
m þ d�Tm A�1

k d�
0

m �

d�Tm A�1
k d�m � lkd

�T
m A�1

k ½2lkIþD� þD�
1 �d

�
m

ð37Þ

is obtained where a prime denotes partial derivative with respect to the parameter a: Hence, the
above formula gives the sensitivity of the eigenvalue lk with respect to a:
The sensitivity of the eigenvector %qk with respect to the parameter a can be obtained in a

straightforward manner, by differentiating expression (23) with respect to a partially to get

%q
0
k :¼

@%qk

@a
¼ �UA�1

k ½l0kð2lkI�D� �D�
1 Þd

�
m þ lkD

�0

1 d
�
m � d�

0

m �: ð38Þ

The sensitivity of the receptance matrix with respect to the parameter a can be obtained simply by
differentiating equation (31) with respect to a to obtain

%H0ðoÞ :¼
@ %HðoÞ
@a

¼H3ðoÞ½�io %D0B %DTH3ðoÞ þ io %DBð %DT
0
H3ðoÞðio %DÞ

þ ð %DTH3ðoÞ ðio %D0ÞÞB %DTH3ðoÞ � io %DB %DT
0
H3ðoÞ�; ð39Þ

where

B ¼ ðIþ %DTH3ðoÞ ðio %DÞÞ�1 ð40Þ

is introduced.
Since the sensitivities of the eigencharacteristics and of the receptance matrix have been

obtained, now the approximate expressions for the modified values of the eigenvalues,
eigenvectors and receptance matrix can be given, if the damping-related parameter a is changed
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by an amount Da around its nominal value a:

lkmod
ElkðaÞ þ l0kðaÞDa; ð41Þ

%qkmod
E%qkðaÞ þ %q0kðaÞDa; ð42Þ

%HðoÞmodE %HðoÞ þ %H0ðoÞDa: ð43Þ

3. Numerical evaluations

This section is devoted to the testing of the reliability of the expressions obtained. The simple
system in Fig. 1 is taken as an illustrative example. It consists of a vibrational system with four
d.o.f. in which every mass is acted upon by an inertial viscous damper and an additional relative
viscous damper is attached between the masses m2 and m3: It is essentially the same mechanical
system as in Ref. [1] except that the damping matrix here is non-diagonal and the present system is
non-proportionally damped. The physical parameters are as follows: m1 ¼ m; m2 ¼ 2m; m3 ¼ 3m;
m4 ¼ m with m ¼ 3 kg; k1 ¼ k; k2 ¼ 2k; k3 ¼ 4k; k4 ¼ k and k5 ¼ k with k ¼ 2 N=m: Further:
%c1 ¼ %c; %c2 ¼ 2%c; %c3 ¼ %c; %c4 ¼ 2%c and %c5 ¼ 0:1%c; with %c ¼ 1 N=ðm=sÞ: It is further assumed that two
relative viscous dampers of constants c1 ¼ 2%c and c2 ¼ 4%c are to be added between the masses m1;
m2 and m3; m4; respectively, as depicted in dashed lines in Fig. 1.
The mass, stiffness and damping matrices of the original system are

M ¼ diagð3; 6; 9; 3Þ; K ¼

6 �4 0 0

�4 12 �8 0

0 �8 10 �2

0 0 �2 4

2
6664

3
7775; *D ¼

1 0 0 0

0 2:1 �0:1 0

0 �0:1 1:1 0

0 0 0 2

2
6664

3
7775:
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Fig. 1. Sample system with four degrees of freedom.
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The damping matrix of the modified system given in Eq. (2) reads as

D ¼ *Dþ d1d
T
1 þ d2d

T
2

¼

1 0 0 0

0 2:1 �0:1 0

0 �0:1 1:1 0

0 0 0 2

2
6664

3
7775þ

ffiffiffiffi
c1

p 1

�1

0

0

2
6664

3
7775

ffiffiffi
c1

p
½1 �1 0 0�

þ
ffiffiffiffi
c2

p 0

0

1

�1

2
6664

3
7775

ffiffiffi
c2

p
½0 0 1 �1�

¼

3 �2 0 0

�2 4:1 �0:1 0

0 �0:1 5:1 �4

0 0 �4 6

2
6664

3
7775:

The solution of the eigenvalue problem of the undamped system yields

U ¼

0:16702739 0:23699340 �0:38616296 0:31646087

0:23370715 0:12999193 �0:06605818 �0:30130723

0:24349274 �0:04719554 0:18178137 0:12864878

0:13539191 �0:48650735 �0:27631637 �0:04429703

2
6664

3
7775;

X2 ¼ diagð0:13438064; 1:26866073; 1:77191603; 3:26948704Þ

for the modal matrix and the matrix of the squares of the eigenfrequencies, respectively.
The eigenvalues l of the modified system in Fig. 1 are given in Table 1. The complex numbers in

the first column are the eigenvalues obtained directly by solving the eigenvalue problem as
indicated in Ref. [1]. The complex numbers in the second and third columns are obtained by
solving Eqs. (12) and (21) respectively. All numerical operations are carried out with MATLAB.
The agreement of the numbers in the three columns is excellent, justifying clearly the validity of
the alternative forms of the characteristic equations (12) and (21).
In order to gain insight into how accurately the eigenvectors can be obtained by the present

method, the eigenvectors of the system in Fig. 1 are given in Table 2 according to the state-space
representation %qTk ¼ ½*yTklk *y

T
k �:

The eigenvectors in the first column are obtained directly by solving the eigenvalue problem of
the system in Fig. 1. The eigenvectors in the second column are determined by using Eq. (23). The
agreement here is excellent.
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Table 1

Eigenvalues l of the modified system in Fig. 1

Direct solution of the eigenvalue problem From Eq. (12) From Eq. (21)

l1;2 �0:14596070:342156i �0:14596070:342156i �0:14596070:342156i
l3;4 �1:14053070:381823i �1:14053070:381823i �1:14053070:381823i
l5;6 �0:23915171:268421i �0:23915171:268421i �0:23915171:268421i
l7;8 �0:59935971:613134i �0:59935971:613134i �0:59935971:613134i
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Table 3

Eigenvalues of the modified system in Fig. 1, if the damping coefficient is changed slightly by an amount Dc2 around its

nominal value c2 ¼ 4

Dc2 From Eq. (21) From Eq. (41)

0 �0:14596070:342156i �0:14596070:342156i
�1:14053070:381823i �1:14053070:381823i
�0:23915171:268421i �0:23915171:268421i
�0:59935971:613134i �0:59935971:613134i

0.001 �0:14596770:342158i �0:14595370:342067i
�1:14074670:381153i �1:14065170:381689i
�0:23914771:268418i �0:23915471:268361i
�0:59936271:613132i �0:59936871:613077i

0.003 �0:14597970:342160i �0:14593970:341890i
�1:14117970:379809i �1:14089570:381421i
�0:23913971:268411i �0:23916071:268241i
�0:59936971:613126i �0:59938571:612963i

0.005 �0:14599170:342163i �0:14592570:341712i
�1:14161370:378460i �1:14113870:381154i
�0:23913171:268404i �0:23916771:268121i
�0:59937671:613120i �0:59940371:612848i

Table 2

Eigenvectors of the modified system in Fig. 1

Direct solution of the eigenvalue problem From Eq. (23)

*y1;2 1.000000 1.000000

1:41065180:064320i 1:41065180:064320i
1:45457880:037187i 1:45457880:037187i
0:84392270:161608i 0:84392270:161608i

*y3;4 1.000000 1.000000

2:61956482:017422i 2:61956482:017422i
3:55643084:976448i 3:55643084:976448i
�13:853560722:065139i �13:853560722:065139i

*y5;6 1.000000 1.000000

0:38464070:286630i 0:38464080:286630i
�0:41795680:174735i �0:41795680:174735i
�0:37670870:058175i �0:37670870:058175i

*y7;8 1.000000 1.000000

�0:55770470:299015i �0:55770470:299015i
0:10587680:205547i 0:10587680:205547i
�0:09368780:178362i �0:09368780:178362i
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Table 4

Eigenvectors of the modified system in Fig. 1, if the damping coefficient is changed slightly by an amount Dc2 around its

nominal value c2 ¼ 4

Dc2 *y1;2 from Eq. (23) *y1;2 from Eq. (42)

0 1.000000 1.000000

1:41065180:064320i 1:41065180:064320i
1:45457880:037187i 1:45457880:037187i
0:84392270:161608i 0:84392270:161608i

0.001 1.000000 1.000000

1:41065080:06432i 1:41065180:064320i
1:45457680:037196i 1:45457980:037187i
0:84395570:161672i 0:84374970:161597i

0.003 1.000000 1.000000

1:41065080:064332i 1:41065180:064320i
1:45457280:037215i 1:45458080:037186i
0:84402170:161801i 0:84340370:161576i

0.005 1.000000 1.000000

1:41064980:064340i 1:41065180:064320i
1:45456880:037234i 1:45458180:037186i
0:84408770:161930i 0:84305670:161555i

Dc2 *y3;4 from Eq. (23) *y3;4 from Eq. (42)

0 1.000000 1.000000

2:61956482:017422i 2:61956482:017422i
3:55643084:976448i 3:55643084:976448i
�13:853560722:065139i �13:853560722:065139i

0.001 1.000000 1.000000

2:62359782:016467i 2:61956482:017422i
3:56737284:975970i 3:55641984:976430i
�13:897999722:059577i �13:851506722:063981i

0.003 1.000000 1.000000

2:63168982:014526i 2:61956482:017422i
3:58934584:974931i 3:55639784:976393i
�13:987238722:048092i �13:847395722:061664i

0.005 1.000000 1.000000

2:63981882:012541i 2:61956482:017422i
3:61143884:973778i 3:55637584:976356i
�14:076958722:036119i �13:843281722:059346i
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Now, one can test the reliability of the sensitivity-based formulae (41)–(43). To this end, the
system in Fig. 1 is denoted as ‘‘nominal’’ system and it is assumed that the damping constant c2
changes by an amount Dc2 around its nominal value c2 ¼ 4; due to some reason, which in turn
causes a modification of the system. Hence the damping related parameter a is chosen as c2:
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Dc2 *y5;6 from Eq. (23) *y5;6 from Eq. (42)

0 1.000000 1.000000

0:38464070:286630i 0:38464070:286630i
�0:41795680:174735i �0:41795680:174735i
�0:37670870:058175i �0:37670870:058175i

0.001 1.000000 1.000000

0:38464970:286631i 0:38464070:286630i
�0:41795580:174728i �0:41795780:174735i
�0:37671970:058132i �0:37674670:058162i

0.003 1.000000 1.000000

0:38466670:286634i 0:38464070:286630i
�0:41795280:174712i �0:41795780:174735i
�0:37674270:058045i �0:37682470:058136i

0.005 1.000000 1.000000

0:38468370:286636i 0:38464070:286630i
�0:41795080:174697i �0:41795880:174735i
�0:37676570:057958i �0:37690270:058109i

Dc2 *y7;8 from Eq. (23) *y7;8 from Eq. (42)

0 1.000000 1.000000

�0:55770470:299015i �0:55770470:299015i
0:10587680:205547i 0:10587680:205547i
�0:09368780:178362i �0:09368780:178362i

0.001 1.000000 1.000000

�0:55770670:299006i �0:55770470:299015i
0:10587080:205533i 0:10587680:205547i
�0:09364980:178386i �0:09370980:178369i

0.003 1.000000 1.000000

�0:55771070:298988i �0:55770470:299015i
0:10585880:205507i 0:10587580:205547i
�0:09357280:178432i �0:09375380:178382i

0.005 1.000000 1.000000

�0:55771570:298969i �0:55770470:299015i
0:10584680:205480i 0:10587580:205548i
�0:09349580:178478i �0:09379780:178395i

Table 4 (continued)
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The eigenvalues of the system, thus modified are calculated by solving the characteristic
equation (21) numerically and then using the sensitivity-based formula (41), considering Eq. (37).
The results are given in Table 3. The complex numbers in the first column are ‘‘exact’’ values
obtained from Eq. (21), whereas those of the second column come from the approximate formula
(41). As can be seen from the table, the agreement of the numbers in both columns is very good,
especially for small values of Dc2: This in turn means that formula (41) gives accurate
approximations for the eigenvalues of the modified system, without having to resolve the
characteristic equation (21) with the parameters of the modified system. In a similar manner, the
eigenvectors of the modified system are calculated first by Eq. (23) and then by the sensitivity-
based formula (42), considering Eq. (38). The results are collected in Table 4. The vectors in the
first columns are ‘‘exact’’ eigenvectors obtained from Eq. (23) and those in the second columns
come from Eq. (42), considering Eq. (38). One sees clearly, that the agreement of the vectors in
both columns is very good. This means that formula (42) gives accurate approximations for the
eigenvectors of the modified system. It is observed that also formula (43) gives very good
approximate results for the receptance matrix of the modified system, but the numerical results are
not given here due to space limitations.

4. Conclusions

This study is concerned with a non-proportionally damped linear discrete mechanical system with
n d.o.f. to which m additional viscous dampers are attached, for some reason. Making use of a
recently developed formula, the n � n characteristic determinant of the above-described system is
reduced to a much smaller determinant of order m � m; where m5n is a frequently encountered case
in practice. Besides, an alternative form of the characteristic equation and an explicit analytical
expression for the eigenvectors of the modified system are given. Further, the eigenvalue, eigenvector
and receptance matrix sensitivities with respect to a damping-related parameter are derived.
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